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Self-Driving Cars & Radars
n Advances in circuit tech reinforced by new signal processing 

algorithms, machine learning, artificial intelligence, and 
computervision tech have made self-driving cars a reality.

n Self-driving cars and advanced driver assistant systems (ADASs) 
consists of mainly automotive radars, lidar (light detection and 
ranging), ultrasound, cameras, and V2X comms.

Sujeet Patole, et al, Automotive Radars, IEEE 
SP Magazine, Mar. 2017, pp.22-35



Automotive radars based on range measurement capability
Radar Type Long-Range

Radars
Medium-Range
Radars

Short-Range
Radars

Range (m) 10–250 1–100 0.15–30
Azimuthal field 
of view (deg.)

15 40 80 

Elevation field
of view (deg.)

5 5 10 

Applications Automotive
cruise 
control

Lane-change assist,
cross-traffic alert,
blind-spot detection,
rear-collision warning

Park assist,
obstacle 
detection,
precrash

Classification of Automobile Radars

Note: An automobile radar is designed to extract location, range, velocity and 
radar cross section (RCS)] about targets, typically operating at mm-wave bands 
24–29GHz and 76–81GHz bands (other radars may use 3 MHz to 300 GHz)



A pulsed continuous waves (CW) 
radar with an MF receiver can 
measure range R of the target car, 
i.e. R = (c/2), =2R/c is the round-
trip time delay, c=3×108 m/s.

A Pulsed CW Radar with MF Receiver



A spectrogram of an FMCW waveform with modulation constant K Typical traffic scenario

A 2-D joint range-Doppler estimation with 77-GHz FMCW radar
The reflected waves are delayed by time  =2(Rvt)/c. The time dependent 
delay term causes a frequency shift in the received wave known as the 
Doppler shift fd =2v/=2vfC/c.

Frequency Modulated (FM) CW Radar



n CW(continuous wave) provides no range information
n Pulsed CW can make range-Doppler performance tradeoff
n FMCW gives both range and Doppler information
n In Stepped Freq CW (SFCW), f decides maximum range
n OFDM is suitable for radar & vehicular communications

Radar Waveforms 
CW, pulsed and frequency



Doppler Freq Measur. by SFCW Radar

(a) Doppler frequency measurement with CW radar           (b) A pulsed CW radar waveform

(c) An SFCW signal                                                               (d) An OFDM block

With the ability to measure both range and speed with high resolution, 
FMCW radar is widely used in the automotive industry.



Message
Generation

Target 
Detection

Signal 
Coding

Correlation

Rx

Tx
Rx

Signal 
Decoding

Target

The Radar part is formed by two co-located and co-rotating antennas 
for transmission and reception. The communication part uses the 
same tx antenna, but a remotely positioned Rx antenna.

OFDM-coded 
signal

OFDM-coded Radar Signals

OFDM Radar signals experience no 
Range-Doppler coupling, compared 
with LFM pulse compression.
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Radar Range Resolution
The return radar signal, r(t), is an attenuated and time-shifted copy of 
the original transmitted signal, s(t), plus  Gaussian noise N(t). To detect 
the incoming signal, matched filtering is commonly used, which is 
optimal when a known signal is to be detected among additive white 
Gaussian noise, i.e. the cross-correlation of s(t) and r(t), 

Function  is the triangle function in [-1/2,1/2], with maximum 1 at (0). 
Thus, the times of arrival of the two pulses must be separated by at least T so 
that the maxima of both pulses can be separated. 
The range resolution with a sinusoidal pulse is cT/2 (distance travelled by a 
wave during T), T is the pulse duration and, c, the speed of the wave. 
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Radar Range Resolution
Conclusion: to increase the resolution, pulse length T must be reduced.

echoes can be distinguishedIf targets are separated enough

echoes are mixed togetherIf targets are too close 

Before matched filtering After matched filtering



Required energy E to transmit signal s(t), and the SNR at receiver,

From the above SNR and the range resolution cT/2, increasing T 
improves the SNR, but reduces the resolution, and vice versa.
How can one have a large enough pulse (to still have a good SNR at the 
receiver) without poor resolution? Pulse compression: 
n a signal is transmitted, with a long enough length so that the energy 

budget is correct;
n this signal is designed so that after matched filtering, the width of 

the intercorrelated signals is smaller than the width obtained by the 
standard sinusoidal pulse, e.g. Linear frequency modulated (LFM) 
pulse (or "chirp").
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LFM Resolution & Compression Ratio

After matched filtering, the echoes 
are shorter in time
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n The distance resolution reachable with a LFM pulse on a bandwidth 
f is: c/(2f), with pulse compression ratio  T/T'=Tf  (20-30 usually)

n After pulse compression, the power of the received signal can be 
considered as being amplified by Tf.

n To deal with high instantaneous bandwidth f (up to 1GHz or 
higher), stretch processing is needed to reduce bandwidth.



In pulsed radar and sonar signal processing, an ambiguity function is 
a two-dimensional function of time delay and Doppler frequency 
( ,f) showing the distortion of a returned pulse due to the receiver 
matched filter & the Doppler shift of the return from a moving target. 
For a given complex baseband pulse s(t), the narrowband ambiguity 
function (AF) is given by

Ideal ambiguity function

which is produced by ideal white 
noise, i.e. no ambiguities at all, not 
physically realizable or desirable. 

Baseband Pulse & Ambiguity Function
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Properties of the Ambiguity Function
(1) Maximum value

(2) Symmetry about the origin

(3) Volume invariance

(4) Modulation by a linear FM signal

(5) Frequency energy spectrum

(6) Upper bounds for p>2 and lower bounds for p<2 exist for the pth 
power integrals                                    .  These bounds are sharp and are 
achieved if and only if s(t) is a Gaussian function.
(7) In radar, the greater the Doppler shift, the smaller the peak of the 
distorted matched filter output, and the more difficult to detect the target.
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Pulse Compression by Coding
n In phase modulation, the pulse of duration T is divided into N time 

slots of duration T/N, each slot is coded with different phase value.

 
n The criteria for code design are the resolution properties of the 

resulting waveform (shape of the ambiguity function), frequency 
spectrum, and the ease with which the system can be implemented.

n The most popular phase codes are:
ü Barker (1953) codes (up to length 13, for binary)
ü Frank (1962), Zadoff-Chu (1963), P1, P2, Px codes (1998)
ü HFM codes
ü Golay complementary codes
ü M sequences
ü Frequency codes (Costas, Pushing sequences)
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N +/-        Octal PSL(dB)
2 +- 2 -6.0
2 ++ 3 -6.0
3 ++- 6 -9.5
4 ++-+ 15 -12.0
4 +++- 16 -12.0
5 +++-+ 35 -14.0
7 +++--+- 162 -16.9

11 +++---+--+- 3422 -20.8
13 +++++--++-+-+ 17565 -22.3

n The pulse compression ratio is lower than in the chirp case;
n The compression is very sensitive to freq changes due to the Doppler 

effect if that change is larger than 1/T.
n Available Barker codes are limited, i.e. only 7 lengths! Longer “Baker” 

codes can be obtained by kronecker product (nested codes).
n Lindner, Cohen, Coxson obtained minimum peak sidelobe codes up to 

length 69, and P Fan et al good longer codes up to length 100+.  

Simple Coding: Binary Barker Codes
Peak Sidelobe 
Level (PSL) ratio           
20log10(1/N)
Merit Factor
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Barker Code Ambiguity Function

Drawback: once the target return is Doppler shifted, the expected 
sidelobes are much higher compared with the zero Doppler cut of AF.



Frank Codes
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Having lower sidelobe level & larger doppler tolerance, Frank codes exist 
only for perfect square length (N=p2).



Modified Frank Codes: P1, P2, Px

n The Px code was shown to yield the same aperiodic peak sidelobe 
as the Frank code but having lower integrated sidelobe level.

n While the Frank code is a perfect code (having an ideal periodic 
autocorrelation function), the Px code is not perfect.

n The P2 code is valid only for q even and is defined exactly as the 
Px code for even q

n The P1 code phase element is defined as follows,
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Zadoff–Chu Code
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The P3, P4, and Golomb polyphase codes are specific cyclically 
shifted and decimated versions of the Zadoff–Chu (ZC) code. 



Ambiguity Function of P1/P2/P3/P4 Codes

P3 and P4 codes are more Doppler tolerant than the P1 & P2 codes 



HFM Codes
  NnMn ,...,1,//)1(1logn  

The peak value of hyperbolic frequency modulation (HFM) polyphase 
codes, derived from the step appropriation of the face curve of the 
hyperbolic modulated chirp signal., degrades much slower and the 
range solution as well as maximum sidelobe level are almost constant 
when Doppler frequency increases, optimized β=0.4 &   α≈0.2643/N.



OFDM-Coded Radar Signals

G.E.A. Franken, et al, Doppler Tolerance of OFDM-Coded Radar Signals, the 3rd 
European Radar Conference (EuRAD 2006),  13-15 Sept. 2006, Manchester, UK.

where noc is the number of freq carriers, f0 is the center freq, and 
p(t) is the shaping function of duration T=noc/B, fi=i B/noc, B is the 
available bandwidth; di is the data bit, e.g. BPSK or QPSK coded.
n The OFDM signals can result in a pulse compression ratio of up 

to noc. The range resolution is therefore improved without 
degrading the Doppler resolution.

n In order to be able to detect a larger range of target speeds, a 
compression filter bank should be used.

n OFDM Radar signals do not experience Range-Doppler coupling 
which is the main disadvantage of pulse compression using LFM.
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Doppler Tolerance of OFDM-Coded 
Radar Signals

noc  Vmax (m/s)
8 2,343.75
16 1,171.88
32 585.94
64 292.97
128 146.48
256 73.24
512 36.62
1024 18.31
2048 9.16
4096 4.58 Ambiguity diagram of an eight carrier OFDM signal

The maximum allowed speed for different pulse compression ratio noc, is 
shown in the table for 1 dB compression loss, when fo=10GHz, B=5MHz.



Zero-Doppler cut of the AF of an 
eight carrier OFDM signal

Zero-delay cut of the AF of an eight 
carrier OFDM signal

Doppler Tolerance of OFDM-Coded 
Radar Signals

n The pulse length after compression is one eighth of the pulse length before 
compression, achieved without change in the Doppler resolution.

n The compression loss is a function of the Doppler frequency fd, and the delay.



n Most binary and polyphase pulse compression codes suffer severe 
signal loss in performance under Doppler environment. 

n Frank code is having acceptable amplitude at zero and other 
selected Doppler values. Having a narrow peak width it is not an 
ideal Doppler tolerant code. 

n P1 & P2 codes are having decent amplitude and wide band for 
better resolution compared to both frank and barker codes but not 
ideal for distant targets.

n P3 & P4 codes are having excellent Doppler tolerance in 
comparison to other codes, good to detect targets at a limited range 
of speeds. 

n HFM code is also excellent in terms of amplitude and Doppler 
resolution, good in radar applications where the variation in 
Doppler is very large.

n OFDM-Coded Radar Signals are good for target detection & data tx.

Single Coded Signals: A Comparison



AF Peak of Various RADAR Codes

n The AF peak should be high and the peak width be large to give an decent 
level of amplitude for wide range of Doppler values.

n At 78GHz, P3/P4 codes are excellent in terms of AF peak and Doppler 
resolution, with the small signal loss over the Doppler shift range.

AF peak reduction for various Doppler shift (f0=78GHz, v=0-122km/hr)

Doppler 
shift (Hz)

Velocity 
(km/h)

16 Bit 
Frank Code

25 Bit 
P1/P2 Code

25 Bit 
P3/P4Code

25 Bit 
HFM Code

0.0000 1.0000 1.0000 1.0000 1.0000
400 5.5 0.7551 0.5920 0.9730 0.8901
600 8.3 0.6923 0.4515 0.6652 0.8280

1200 16.6 0.7822 0.6870 0.8572 0.6894
2600 36.0 0.5748 0.4313 0.5878 0.4074
3800 52.6 0.6612 0.5286 0.5398 0.2475
5000 69.2 0.5314 0.3720 0.4734 0.1399
6200 85.8 0.3978 0.4445 0.3869 0.1139
7400 102.5 0.3443 0.3048 0.3014 0.1319
8600 119.1 0.3251 0.2273 0.2695 0.1215



AF Peak of Various RADAR Codes

n The AF peak should be high and the peak width be large to give an decent 
level of amplitude for wide range of Doppler values.

n At 5.9GHz, Frank and HFM codes are excellent in terms of AF peak and 
Doppler resolution, with the small signal loss over the Doppler shift range.

AF peak reduction for various Doppler shift (f0=5.9GHz, v=0-122km/hr)
Doppler 

Shift (Hz)
Velocity 
(km/h)

16 Bit 
Frank Code

25 Bit 
P1/P2 Code

25 Bit P4 
Code

25 Bit 
HFM Code

0.00 0.00 1.0000 1.0000 1.0000 1.0000
20 3.7 0.9894 0.9379 0.9739 0.9379
60 10.9 0.9072 0.5205 0.7365 0.9229

150 27.5 0.6923 0.4515 0.6652 0.8280
250 45.8 0.8491 0.4552 0.6673 0.7173
350 64.1 0.6336 0.4368 0.6593 0.6200
450 82.4 0.7005 0.5946 0.6421 0.5353
500 91.5 0.7290 0.8970 0.7317 0.5220
600 109.8 0.5762 0.5685 0.6682 0.4528
650 118.9 0.5748 0.4313 0.5878 0.4074



n A key issue in phase coding is the presence of range sidelobes in 
the ambiguity function of the coded waveforms. Range sidelobes 
due to a strong reflector can result in masking of nearby weak 
targets. 

n There is no single code sequence with perfect AACF for length >4! 
Barker codes are the best in terms of AACF, but Doppler sensitive.

n For Golay pair, the two sequences are transmitted alternatively in 
time over several pulse repetition intervals (PRIs). The effective 
ambiguity function of a Golay pair of phase coded waveforms is 
free of range sidelobes along the zero-Doppler axis.

Golay Complementary Codes



Golay Complementary Pair/Set
A set of sequences S1= {s1,n}, S2= {s2,n}, …, each of length N, is 
called complementary (Golay) pair (or set) if
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Perfect Aperiodic ACF of a Golay pair Ambiguity function of a Golay pair
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n However, the ideal aperiodic 
ACF property of Golay codes is 
sensitive to Doppler effect. 

n Off the zero-Doppler axis the 
ambiguity function of Golay 
pairs of phase coded waveforms 
has large range sidelobes, a 
major barrier for radar pulse 
compression.

n Is it possible to construct a 
Doppler resilient pulse train of 
Golay complementary 
waveforms, for which the range 
sidelobes of the ambiguity 
function vanish inside a desired 
Doppler interval?

Doppler Resilient Requirement 

This radar scene contains 3 stationary 
reflectors at different ranges and 2 slow-
moving targets, which are 30dB weaker than 
the stationary reflectors 

2 slow-
moving 
targets

χS(τ,0)

256 PRIs (T=50s), N=64, Tc=100ns, f0=17GHz 
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n Pezeshki et al showed, by carefully 
choosing the order in which a Golay pair 
of phase coded waveforms sx(t) and sy(t) is 
transmitted over time one can clear out the 
range sidelobes of the pulse train 
ambiguity function along modest (close to 
zero) Doppler shifts.

n If the transmission of a Golay pair of phase 
coded waveforms is coordinated in time 
according to the entries in a biphase 
sequence, then the magnitude of the range 
sidelobes can be controlled by shaping the 
spectrum of the biphase sequence.

[1] A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler resilient Golay 
complementary waveforms,” IEEE Trans. Inform. Theory, vol. 54, no. 9, Sept. 2008.
[2] A. Pezeshki, A. R. Calderbank, et al, “Doppler resilient Golay complementary pairs for radar,” in 
Proc. Stat. Signal Proc. Workshop, Madison, WI, Aug. 2007, pp. 483–487.
[3] Yuejie Chi, Ali Pezeshki, et al, “Range sidelobe suppression in a de- sired Doppler interval,” IEEE 
International Waveform Diversity and Design Conference, 258-262, 2009. 

Doppler Resilient Sequences (DRS)



Consider a biphase sequence P={pn}, pn{-1,1}, 0≤n≤L−1, length L 
is even. Let pn=1 and -1 represent sx(t) and sy(t) respectively, (x,y) is 
a Golay pair. Then a P-pulse train SP(t) of (sx(t), sy(t)) is defined as

The nth entry in SP(t) is sx(t) if pn=1, and sy(t) if pn=-1. Consecutive 
entries are separated in time by a pulse repetition interval (PRI) T. 
The ambiguity function (AF) of SP(t), after ignoring the pulse shape 
AF, discretizing in delay, relative Doppler shift θ=νT, is 
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                                                       Mth-order null at θ=0

range sidelobes



n PTM sequence was introduced by Thue in 1906 and rediscovered 
by Morse in 1921, but was implicit in an 1851 paper of Prouhet.

n Denote by P={pn}, n≥0, the Prouhet-Thue-Morse (PTM) sequence 
over {-1,1}, defined recursively by p0=1, and p2n=pn, p2n+1=-pn.

n The spectrum of PTM {pn} of length 2M+1 has an Mth-order null at 
θ=0.

n Example: The PTM sequence of length L=22+1 is P=(+1 -1 -1 +1 -1 
+1 +1 -1), and the PTM pulse train of Golay complementary 
waveforms is SP(t)=sx(t) + sy(t-T) + sy(t-2T) + sx(t-3T) + sy(t-4T) + 
sx(t-5T) + sx(t-6T) + xy(t-7T), the AF of SP(t) has a 2nd-order null 
along the zero-Doppler axis.

      

Prouhet-Thue-Morse (PTM) Sequence



Ambiguity function of a length L=23+1 PTM pulse train of Golay 
complementary waveforms, which has a 3th-order null at zero-Doppler

16 PRIs (T=50s), N=8, Tc=100ns, f0=17GHz 

Doppler Resilient PTM Pulse Train

Doppler resilient transmission scheme             Conventional transmission scheme

A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler resilient Golay complementary 
waveforms,” IEEE Trans. Inform. Theory, vol. 54, no. 9, Sept. 2008.
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Prouhet-Tarry-Escott Problem
Prouhet-Tarry-Escott Problem: Let A and B be two disjoint subsets of 
n integers each. Then A, B are equal sums of (like) powers (ESP) sets 
of degree k if 

                                                           
for  i=1,...,k.  Solutions with k=n-1 are called ideal solutions, existing 
for 3≤n≤10 & n=12. No ideal solution is known for n=11 or for n≥13.
Example: Since A={0,4,5} and B={1,2,6} in P=AB={0,1,2,4,5,6} 
form an ESP pair of degree k=2 (n=3, ideal), it is obvious that the pair 
A'={0,3,4,5} and B'={1,2,36} in P'=A'B'={0,1,2,3,4,5,6} is also an 
ESP pair of degree k=2 (n=4, non-ideal).
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Prouhet-Thue-Morse (PTM) Sequence is a special case of ESP 
sequence with n=2k, namely, partition the numbers from 0 to 2k+1-1 
into the evil numbers and the odious numbers, thus giving a non-
ideal solution (k≠n-1) to the Prouhet-Tarry-Escott Problem.

PTM Sequence and ESP Sequence

Example: For PTM Sequence of n=23+1=8, k=3, Prouhet's solution is: 
A={0, 3, 5, 6, 9, 10, 12, 15}, B={1, 2, 4, 7, 8, 11, 13, 14}, satisfying
0i + 3i + 5i + 6i + 9i + 10i + 12i + 15i = 1i + 2i + 4i + 7i + 8i + 11i + 13i + 
14i,    for i=1,2,3.
PTM sequence:   (0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 · · ·)
or bipolar form: (+1 -1 -1 +1 -1 +1 +1 -1 -1+1 +1 -1 +1 -1 -1 · ·  · )
Example: An ideal ESP (non-PTM) sequence of n = 6, k=n-1=5, the 
two sets are: A={ 0, 5, 6, 16, 17, 22 } and B={ 1, 2, 10, 12, 20, 21 }.



n The characterisation of Doppler-null codes bears a striking 
resemblance to the characterisation of spectral-null codes.

n It can be shown that Doppler-null codes have higher-order zeros, 
it follows from a well-known result in calculus that the higher 
order derivatives in their ambiguity functions must vanish. 

n ESP pulse trains provide the same Doppler tolerance as PTM pulse 
trains, but are generally shorter in length, by using multiple 
antennas to transmit separate pulse trains staggered in time. 

Example: As shown earlier, A={0,4,5} and B={1,2,6} in P=AB= 
{0,1,2,4,5,6} form an ESP pair of degree k=2 (n=3, ideal). Giving Golay 
pair (x, y), we can form a pulse train T=(x, y, y, x+y, x, x, y) with a gap 
at position 3,  A'={0,3,4,5} and B'={1,2,3,6} is also an ESP pair of 
degree k=2 (n=4). 

Doppler Resilient ESP Pulse Train

H D Nguyen1, G E Coxson, Doppler tolerance, complementary code sets, and generalised Thue–Morse 
sequences, IET Radar Sonar Navig., 2016, Vol. 10 Iss. 9, pp. 1603-1610. 



Then, instead of single pulse train T=(x, y, y, x+y, x, x, y), one can 
transmit two separate pulse trains of length 4 with Golay pair (x, y), 
i.e. T0, and 3 PRIs delayed T1 
T0 = (x, y, y, x)                % tx from antenna No.1    
T1(3)=         (y, x, x, y)    % tx from antenna No.2, delayed by 3 PRIs
To show the AF g(k,) has Doppler nulls of order 2 at =0, one can 
compute its Doppler (Taylor) coefficients,
        ci(k)=g(i)(k,0)=(0i+3i+4i+5i)Cx(k) + (1i+2i+3i+6i)Cy(k)
               =Pi (Cx(k)+Cy(k))=2NPi k,     for i=0,1,2
Thus achieving the same Doppler tolerance as with a single PTM 
pulse train of length 8 by using instead two staggered (but 
overlapping) pulse trains of length 4, although the total number of 
pulses transmitted is the same, namely 8, in both cases.

Doppler Resilient ESP Pulse Train



Example: An ESP pair of n=4, k=3, A={0, 4, 7, 11},  B={1, 2, 9, 10}, 
0i+ 4i+ 7i+ 11i= 1i+ 2i+ 9i+ 10i,  for i=1,2,3

A'={0, 3, 4, 5, 6, 7, 8, 11}, B'={1, 2, 3, 5, 6, 8, 9, 10} is also an ESP 
pair of degree k=3 (n=8)

We now transmit 4 pulse trains T0, T1(3), T2(5), T3(8) on 4 separate
antennas having delays 0, 3, 5, 8, respectively. 
The total transmission time from 16 pulses (for a single PTM pulse 
train of length 16 having the same Doppler tolerance) is reduced 
down to 12 by using instead 4 pulse trains transmitted separately, 
although the total number of pulses transmitted is the same (16) in 
both cases.

Doppler Resilient ESP Pulse Train



Outline
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[1] Pingzhi Fan, Weina Yuan, et al, Z-complementary binary sequences, IEEE Signal 
Processing Letters, Vol. 14, No.8, August 2007, pp.509-512. 
[2] Lifang Feng, Pingzhi Fan, et al, Generalized Pairwise Z-complementary Codes, IEEE 
Signal Processing Letters, Vol.15,  pp.377-380, 2008. 

Z-Complementary Sequences
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Kernels of Binary Z-Golay Pairs
N Zm Example of Z-complementary sets (C,S) Summed ACF: AC(k)+AS(k)
2 2 (++; +-) (4, 0)
3 2 (+++，+-+) (6, 0, 2)
5 3 (++++-，+-++-) (10, 0, 0, 2, -2)
7 4 (++++--+，++-+-++) (14, 0, 0, 0, -2, 2, 2)
9 5 (+++++--++，++-+-+--+) (18, 0, 0, 0, 0, 2, -2, 2, 2)
10 10 (+--+ - +---+; +------++-) (20, 0, 0, 0, 0, 0, 0, 0, 0, 0)
11 6 (+++++-+-+--, ++---++-++-) (22, 0, 0, 0, 0, 0, -2, -2, 2, -2, -2)
12 10 (++++--+-+-++，+-+++++--++-) (24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0)
13 7 (++++++--+-+-+，+++--+-++--++) (26, 0, 0, 0, 0, 0, 0, 2, -2, -2, 2, 2, 2)
14 12 (+++++-+--+++--，+-++-+---+---+) (28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4, 0)
15 8 (++++++-+--++++-，+-+--++--+++-+-) (30, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 6, -2, 2, -2)
17 9 (-------+-+++---++,--+-++--++-+-+--+) (34, 0, 0, 0, 0, 0, 0, 0, 0, 2, -6, 2, 2, -2, 2, -2,-2)
18 13 (----+--+--+---++++,-+++---+-+-++-+++-) (36,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,-4,0)
19 10 (+--------++--+-++--,+--+++-+----++-+-+-) (38, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, -6, 2, 2, -2, 2, 2, 2, -2)
21 11 (+--------+-++-+--+++-,+-+---+++--++-+++-+--) (42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 2, -6, 2, -2, 2, -2, 2, 

2, -2)
22 17 (--------+++-+-+--++-++,-+--++----+++--+-+-++-

)
(44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,-4,0)

23 12 (-------+-+--+++-++----+,--+-+--++--+-+++---+-
++)

(46,0,0,0,0,0,0,0,0,0,0,0,-6,-2,-2,6,-2,6,2,2,2,-2,-2)

25 13 (--------+-++-+---++-++--+,-++-+-+---+-++++--
+++---+)

(50,0,0,0,0,0,0,0,0,0,0,0,0,2,6,-6,2,-2,2, -2,-2,-2,2,2,-
2)

26 26 (+ + +--+++- +-----+ -++--+----; ---++---+ -++- + 
- + -++--+----)

(52,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)



Kernels of Quadriphase Z-Golay Pairs
N Zmax Example of generators Summed ACF
3 3 (1,1,-1;  1, i, 1) (6, 0, 0)
4 4 (1,1,1,-1; 1,1,-1,1 ) (8, 0, 0, 0)
5 5 (1,1,1,–i, i ; 1, i, -i,1,i ) (10, 0, 0, 0, 0)
6 6 (1,1,1,i ,-1,1; 1,1,–i ,-1,1,-1 ) (12, 0, 0, 0, 0, 0)
7 6 (1,1,1,1,-1,-1,1; 1, i, –i ,1, –i ,i ,1) (14, 0, 0, 0, 0, 0, 2)
8 8 (1,1,1,1,1,-1,-1 1; 1,1,-1,-1,1,-1,1,-1) (16, 0, 0, 0, 0, 0, 0, 0)

9 8 (1,-1,i ,1, i ,–i ,–i ,–i ,1; 1,1,1,i ,–i ,1, -1, i ,1) (18, 0, 0, 0, 0, 0, 0, 0, 2)

[1] X. D. Li, P. Z. Fan, Constructions of Quadriphase Z-complementary Sequences, IWSDA’2009, 
October, 2009, Fukuoka, Japan. 
[2] X. Li, P. Fan, et al, Existence of binary Z-complementary pairs,” IEEE SPL, vol.18, no.1, 2011.
[3] Zilong Liu, Udaya Parampalli, Yong Liang Guan, Optimal Odd-Length Binary Z-Complementary 
Pairs, IEEE Trans on Information Theory, 2014, Vol.60, No.9.
[4] X. Li, et al, New construction of Z-complementary pairs, Electron. Lett., vol.52, no.8, 2016.
[5] Chao-Yu Chen, A Novel Construction of Z-Complementary Pairs Based on Generalized Boolean 
Functions, IEEE SPL, Vol.24, NO.7, JULY 2017.



Consider a biphase sequence P={pn}, pn{-1,1}, 0≤n≤L−1, length L 
is even. Let pn=1 and -1 represent sx(t) and sy(t) respectively, (x,y) is 
a Z-Golay pair. Then a P-pulse train SP(t) of (sx(t), sy(t)) is defined as

The nth entry in SP(t) is sx(t) if pn=1, and sy(t) if pn=-1. Consecutive 
entries are separated in time by a PRI, i.e. T. The ambiguity function 
(AF) of SP(t), after ignoring the pulse shape AF, discretizing in delay, 
relative Doppler shift θ=νT, is 
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Doppler Resilient Z-Golay Pulse Train

Ambiguity function of the 1 order PTM 
pulse train of Z-Golay (N=12,Zm=10),
Z-Golay(N=12,Zm=10):  (x,y)=(1,1,1,1,-1,-1,1,-1,1,-1,1,1;  1,-1,1,1,1,1,1,-1,-1,1,1,-1);
Golay Code(N=10):         (x,y)=(1,-1,-1,1,-1,1,-1,-1,-1,1;    1,-1,-1,-1,-1,-1,-1,1,1,-1)
PTM: (1 -1 -1 1):            transmission pulse train {x y y x}

Ambiguity function of the 1 order 
PTM pulse train of Golay (N=10),

Due to the volume invariance property of AF, Z-Golay codes behaves better 
than Golay code within zero correlation zone Zm, due to the bigger AF 
values outside the zero correlation zone in Z-Golay codes

－9



Doppler Resilient Z-Golay Pulse Train

Ambiguity function of the 1st order PTM pulse train of Z-Golay (N=12, Zm=10) and 
Golay waveform(N=10), at θ=0.05 and 0.075 respectively

Z-Golay(N=12,Zm=10):   (x,y)=(1,1,1,1,-1,-1,1,-1,1,-1,1,1;  1,-1,1,1,1,1,1,-1,-1,1,1,-1);
Golay Code(N=10):          (x,y)=(1,-1,-1,1,-1,1,-1,-1,-1,1;    1,-1,-1,-1,-1,-1,-1,1,1,-1)
PTM: (1 -1 -1 1):             transmission pulse train: {x y y x}
In many application, Z-Golay with Zm (zero correlation zone) is enough.



Doppler Resilient Z-Golay Pulse Train

Ambiguity function of the  degree=2 ESP 
pulse train of Z-Golay (N=12,Zm=10)

Z-Golay(N=12,Zm=10):  (x,y)=(1,1,1,1,-1,-1,1,-1,1,-1,1,1;  1,-1,1,1,1,1,1,-1,-1,1,1,-1);
Golay Code(N=10):         (x,y)=(1,-1,-1,1,-1,1,-1,-1,-1,1;    1,-1,-1,-1,-1,-1,-1,1,1,-1)
ESP: (0 4 5),(1 2 6):         transmission pulse train {x y y x+y x x y}

Ambiguity function of the degree=2 
ESP pulse train of Golay (N=10)

－9



Doppler Resilient Z-Golay Pulse Train

Ambiguity function of the degree=2 ESP pulse train of Z-Golay (N=12,Zm=10) and Golay 
waveform (N=10) at θ=0.1 and 0.125 respectively

Z-Golay(N=12,Zm=10):  (x,y)=(1,1,1,1,-1,-1,1,-1,1,-1,1,1;  1,-1,1,1,1,1,1,-1,-1,1,1,-1);
Golay Code(N=10):         (x,y)=(1,-1,-1,1,-1,1,-1,-1,-1,1;    1,-1,-1,-1,-1,-1,-1,1,1,-1)
ESP: (0 4 5),(1 2 6):         transmission pulse train {x y y x+y x x y}



Yuejie Chi, Ali Pezeshki, Robert Calderbank, et al, “Range sidelobe suppression in a de- sired 
Doppler interval,” IEEE Int Waveform Diversity and Design Conf, 2009. 

n In addition to Doppler tolerance in the neighborhood of zero 
Doppler shift, Chi et al considered the rational Doppler shift in 
neighborhood of rational θ=2π i /m (away from zero Doppler) 
for which PTM sequences are still important.

n The idea is to oversample the PTM sequence by a factor m. 
n This idea can also be applied to ESP sequences with Z-Golay 

pulse train to achieve Doppler resilience in the neighborhood of 
rational θ=2π i /m.

Example: For ESP pulse trains: A'={0,3,4,5}, B'={1,2,3,6}  -> (x, y, y, 
x+y, x, x, y), by oversampling with factor m=3, i.e. x ->xxx, y->yyy, 
and delayed 9 PRIs
    T0= (x, y, y, x),              ->  T0'= (xxx, yyy, yyy, xxx)
    T1(3)=        (y, x, x, y),  ->  T1'(9)=                    (yyy, xxx, xxx, yy) 

 ESP Doppler Tolerance at θ=2πi/m



JiahuanWANG, Pingzhi FAN, et al, Doppler Resilient Z-complementary Waveforms From ESP 
Sequences, the 8th Int. Workshop on Signal Design and its Applications in Communications 
(IWSDA'17),  24-28 Sept, 2017, Sapporo, Japan.

Doppler Resilient Z-Golay Pulse Train

Ambiguity function of the degree=2 ESP pulse train of Z-Golay waveform, N=21, Zm=11
x = [1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 1 -1];
y = [1 -1 1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 1 1 1 -1 1 -1 -1 ];



AF of the degree 5 ESP pulse train 
of Z-Golay waveform at θ=2π/3

AF of order 5 PTM pulse train of 
Z-Golay waveform at θ=2π/3

 ESP versus PTM Z-Golay Pulse Train

ESP's Doppler tolerant performance at θ=2π/3 is noticeably better 
than PTM's, as the band around θ=2π/3 is clearly broader in ESP 
Z-Golay case. 



A cut of ambiguity function of the order 5 PTM and degree 5 
ESP at Doppler shift θ = 2π/3 − 0.075 rad. 

In proper delay interval [−9, 9], the peaks of sidelobe determined 
by ESP are at least 15dB smaller than those determined by PTM. 

 ESP versus PTM Z-Golay Pulse Train



Outline
p Automotive Radars and Related Signals
p Pulse Compression and Phase Coding
p Doppler Resilient Sequences (DRS)
p DRS Design based on Z-Ambiguity
p Seqs for Optimized AF & PAPR in CR



n To solve the scarcity of available spectrum, cognitive radio (CR) is 
proposed to provide the capability of using and sharing spectrum 
in an opportunistic manner. 

n The spectrum opportunity is defined as spectrum holes which are 
not being used by the designated primary users at a particular 
time in a particular geographic area.

n Traditional sequences which assume the availability of the entire 
spectral band with no spectrum hole constraint cannot be 
applied directly in CR system.  

Seqs for Optimized AF & PAPR in CR

[1] I. F. Akyildiz, W. Y. Lee, et al, “Next generation/dynamic spectrum access/cognitive radio 
wireless networks: a survey,” Comput. Netw., vol. 50, pp. 2127-2159, Sept. 2006.
[2] N. Levanon and E. Mozeson, Radar Signals, New York: Wiley, 2004.
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n For high power transmission efficiency, it is  desirable to have 
sequences with low peak-to-average power ratio (PAPR).

n In practice, Doppler shifts/spreads, caused by objects such as 
signal reflectors, moving tx/rx, need to be considered, i.e. 
thumbtack shape Ambiguity function (AF) is desirable.

n For practical applications, sequences satisfying the following 
conditions are useful:

ü Good local AF property in the area of interest;
ü Low PAPR value;
ü Subject to a spectrum hole constraint in frequency domain, 

ideally, with zero spectral leakage over the spectrum holes.

Practical Requirements of Seqs Design

[1] S. Hu, Z. L. Liu, et al, “Sequence design for cognitive CDMA communications under 
arbitrary spectrum hole constraint,” IEEE Journal on Selected Areas in Communications, 
vol. 32, pp. 1974-1986, Nov. 2014.
[2] LS. Tsai, et al, “Syntehsizing low autocorrelation and low PAPR OFDM sequences 
under spectral constraints through convex optimization and GS algorithm,” IEEE Trans. 
Signal Process., vol. 59, pp. 2234-2243, May 2011.



Spectrum Hole, PAPR & AF Constraints
n Assume that there are N subcarriers in the entire spectrum. Let 

S=[S0,S1,…,SN-1] be a subcarrier marking vector, in which Sk=1, if 
the k-th subcarrier is available and 0 otherwise. Ω={k|Sk=0} is 
the set of all unavailable subcarrier positions which is also called 
as a spectrum hole constraint set.

n The PAPR of a time-domain sequence x is defined as

      For a unimodular sequence, the ideal PAPR equals 0 dB.
n The aperiodic discrete AF of frequency-domain sequence X can 

be defined as

 

      where I={i|-m≤i≤N-1-m}∩{i|0≤i≤N-1}.
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Joint Resolution in a Specific AF Area
n In radar systems, joint resolution denotes the ratio of the squared 

magnitude of center peak to the ambiguity surface in the entire 
delay-Doppler domain. 

n The joint resolution in the specific area of AF plane
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The ideal value of joint resolution is 1, i.e. 
the sidelobes equal 0 in the specific area.
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n J1 optimizes local AF of the B to be designed.
n J2 optimizes PAPR of the B to be designed,
n J optimizes PAPR and local AF for a given penalty factor μ, 

constrained by spectrum hole Ω. (Algorithm 2)
n X is a frequency-domain sequence having good local AF which 

can be calculated by Energy Gradient Method (Algorithm 1).

Let B=[B0,B1,…,BN-1]T be the the frequency-domain sequence 
with Bk=|Bk|ejΦk , Bk=0, if k ∈Ω.

Seqs for Optimized AF & PAPR in CR

Tianjun LIU, Pingzhi FAN, et al, Sequence Design for Optimized Ambiguity Function and PAPR
under Arbitrary Spectrum Hole Constraint, , the 8th Int. Workshop on Signal Design and its 
Applications in Communications (IWSDA'17),  24-28 Sept, 2017, Sapporo, Japan.



Seq Design Example No.1
The number of subcarriers /
The length of the sequence

N 64

Entire bandwidth B 8MHz
Spectrum hole constraint set Ω {15,16,17,18}∪{45,46,47,48}
Unavailable bands 1.875~2.375MHz and 

5.625~6.125MHz
Chip duration Tb 0.125μs
Penalty factor μ 0.5
Normalized Doppler-shifts 
of interest set

P {-3,-2,-1,0,1,2,3}

Sidelobe control coefficients wp,m if |m|<=10 and p∈P, wp,m=1 
otherwise 0



AF of the CR sequence with penalty factor 0.6 
[S. Hu, Z. L. Liu, et al, 2014]

PAPR = 2.9403dB
joint resolution=0.32

maximum normalized sidelobe = 0.2993.

AF of the CR sequence generated by the 
proposed algorithm
PAPR = 2.9603dB

joint resolution = 0.7204
maximum normalized sidelobe = 0.0997.

Seq Design Example No.1: AF
The proposed sequences possess larger joint resolution and lower maximum 
sidelobe in the area of interest, i.e., better local AF performance.



Seq Design Example No.1: bi=|bi|e jΦi 



Frequency- and time-domain magnitudes of the CR sequence 

Seq Design Example No.1: |Bk| & |bi|



The number of subcarriers /
The length of the sequence

N 64

Entire bandwidth B 8MHz
The spectrum hole constraint set Ω {0}∪{27,28,…,37}

Unavailable bands 0~0.125MHz and 
3.375~4.75MHz

Chip duration Tb 0.125μs
Penalty factor μ 0.95

Normalized Doppler-shifts of 
interest set

P {-6,-5,…,0,…,5,6}

Sidelobe control coefficients wp,m if |m|<=5, m≠0, and p∈P, 
wp,m=1 otherwise 0

Seq Design Example No.2



AF of the CR sequence (local Doppler-tolerant sequence) 
generated by the algorithm 2,  PAPR = 6.4684dB

Seq Design Example No.2: AF
The algorithm can generate local Doppler-tolerant 
sequences under arbitrary spectrum hole constraint.



Seq Design Example No.2: bi=|bi|e jΦi 



Frequency- and time-domain magnitudes of the CR sequence 

Seq Design Example No.2: |Bk| & |bi|



Concluding Remarks
n One can construct a Doppler resilient pulse train of 

Golay waveforms, as well as Z-Golay waveforms.
n Z-Golay codes exist for all lengths, as well as having 

better Doppler tolerance within the zero correlation 
zone.

n We can also achieve the same Doppler tolerance based 
ESP Z-Golay waveforms. 

n One can also design Doppler-resilient codes in 
neighborhood of rational θ=2π i /m, by oversampling 
PTM or ESP codes. 

n It is possible to design sequences with desirable AF & 
PAPR constrained by spectrum hole in cognitive radio.



Questions?


